
Lecture 29

Uniqueness Theorem

29.1 Uniqueness Theorem

The uniqueness of a solution to a linear system of equations is an important concept in
mathematics. Under certain conditions, ordinary differential equation partial differential
equation and matrix equations will have unique solutions. But uniqueness is not always
guaranteed as we shall see. This issue is discussed in many math books and linear algebra
books [69, 81]. The prove of uniqueness for Laplace and Poisson equations are given in
[29, 48] which is slightly different for electrodynamic problems. In this section, we will prove
uniqueness theorem for electrodynamic problems [31, 34, 47, 59, 75]. First, let us assume that
there exist two solutions in the presence of one set of common impressed sources Ji and Mi.
Namely, these two solutions are Ea, Ha, Eb, Hb. Both of them satisfy Maxwell’s equations
and the same boundary conditions. Are Ea = Eb, Ha = Hb?

To study the uniqueness theorem, we consider general linear anisotropic inhomogeneous
media, where the tensors µ and ε can be complex so that lossy media can be included, it
follows that

∇×Ea = −jωµ ·Ha −Mi (29.1.1)

∇×Eb = −jωµ ·Hb −Mi (29.1.2)

∇×Ha = jωε ·Ea + Ji (29.1.3)

∇×Hb = jωε ·Eb + Ji (29.1.4)

By taking the difference of these two solutions, we have

∇× (Ea −Eb) = −jωµ · (Ha −Hb) (29.1.5)

∇× (Ha −Hb) = jωε · (Ea −Eb) (29.1.6)

Or alternatively, defining δE = Ea −Eb and δH = Ha −Hb, we have

∇× δE = −jωµ · δH (29.1.7)

∇× δH = jωε · δE (29.1.8)
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The difference solutions satisfy the original source-free Maxwell’s equations.

By taking the left dot product of δH∗ with (29.1.7), and then the left dot product of δE∗

with the complex conjugation of (29.1.8), we obtain

δH∗ · ∇ × δE = −jωδH∗ · µ · δH
δE · ∇ × δH∗ = −jωδE · ε∗ · δE∗ (29.1.9)

Now, taking the difference of the above, we get

δH∗ · ∇ × δE− δE · ∇ × δH∗ = ∇ · (δE× δH∗)
= −jωδH∗ · µ · δH + jωδE · ε∗ · δE∗ (29.1.10)

Figure 29.1: Geometry for proving the uniqueness theorem. We like to know the boundary
conditions needed on S in order to guarantee the uniqueness of the solution in V .

Next, integrating the above equation over a volume V bounded by a surface S as shown
in Figure 29.1. Two scenarios are possible: one that the volume V contains the impressed
sources, and two, that the sources are outside the volume V . After making use of Gauss’
divergence theorem, we arrive at

�
V

∇ · (δE× δH∗)dV =

�
S

(δE× δH∗) · dS

=

�
V

[−jωδH∗ · µ · δH + jωδE · ε∗ · δE∗]dV (29.1.11)

And next, we would like to know the kind of boundary conditions that would make the
left-hand side equal to zero. It is seen that the surface integral on the left-hand side will be
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zero if:1

1. If n̂×E is specified over S so that n̂×Ea = n̂×Eb, then n̂× δE = 0 or the PEC boundary
condition for δE, and then2

S
(δE× δH∗) · n̂dS =


S

(n̂× δE) · δH∗dS = 0.

2. If n̂ × H is specified over S so that n̂ × Ha = n̂ × Hb, then n̂ × δH = 0 or the PMC
boundary condition for δH, and then

S
(δE× δH∗) · n̂dS = −


S

(n̂× δH∗) · δEdS = 0.

3. If n̂ × E is specified over S1, and n̂ ×H is specified over S2 (where S1 ∪ S2 = S), then
n̂ × δE = 0 (PEC boundary condition) on S1, and n̂ × δH = 0 (PMC boundary condition)
on S2, then the left-hand side becomes

S
(δE× δH∗) · n̂dS =

�
S1

+
�
S2

=
�
S1

(n̂× δE) · δH∗dS
−
�
S2

(n̂× δH∗) · δEdS = 0.

Thus, under the above three scenarios, the left-hand side of (29.1.11) is zero, and then
the right-hand side of (29.1.11) becomes

�
V

[−jωδH∗ · µ · δH + jωδE · ε∗ · δE∗]dV = 0 (29.1.12)

For lossless media, µ and ε are hermitian tensors (or matrices3), then it can be seen, using
the properties of hermitian matrices or tensors, that δH∗ ·µ · δH and δE · ε∗ · δE∗ are purely
real. Taking the imaginary part of the above equation yields

�
V

[−δH∗ · µ · δH + δE · ε∗ · δE∗]dV = 0 (29.1.13)

The above two terms correspond to stored magnetic field energy and stored electric field
energy in the difference solutions δH and δE, respectively. The above being zero does not
imply that δH and δE are zero.

For resonance solutions, the stored electric energy can balance the stored magnetic energy.
The above resonance solutions are those of the difference solutions satisfying PEC or PMC
boundary condition or mixture thereof. Therefore, δH and δE need not be zero, even though
(29.1.13) is zero. This happens when we encounter solutions that are the resonant modes of
the volume V bounded by surface S.

Uniqueness can only be guaranteed if the medium is lossy as shall be shown later. It is
also guaranteed if lossy impedance boundary conditions are imposed.4 First we begin with
the isotropic case.

1In the following, please be reminded that PEC stands for “perfect electric conductor”, while PMC stands
for “perfect magnetic conductor”. PMC is the dual of PEC. Also, a fourth case of impedance boundary
condition is possible, which is beyond the scope of this course. Interested readers may consult Chew, Theory
of Microwave and Optical Waveguides [75].

2Using the vector identity that a · (b× c) = c · (a× b) = b · (c× a).
3Tensors are a special kind of matrices.
4See Chew, Theory of Microwave and Optical Waveguides.
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29.1.1 Isotropic Case

It is easier to see this for lossy isotropic media. Then (29.1.12) simplifies to

�
V

[−jωµ|δH|2 + jωε∗|δE|2]dV = 0 (29.1.14)

For isotropic lossy media, µ = µ′ − jµ′′ and ε = ε′ − jε′′. Taking the real part of the above,
we have from (29.1.14) that

�
V

[−ωµ′′|δH|2 − ωε′′|δE|2]dV = 0 (29.1.15)

Since the integrand in the above is always negative definite, the integral can be zero only if

δE = 0, δH = 0 (29.1.16)

everywhere in V , implying that Ea = Eb, and that Ha = Hb. Hence, it is seen that uniqueness
is guaranteed only if the medium is lossy. The physical reason is that when the medium is
lossy, a pure time-harmonic solution cannot exist due to loss. The modes, which are the
source-free solutions of Maxwell’s equations, are decaying sinusoids.

Notice that the same conclusion can be drawn if we make µ′′ and ε′′ negative. This
corresponds to active media, and uniqueness can be guaranteed for a time-harmonic solution.
In this case, no time-harmonic solution exists, and the resonant solution is a growing sinusoid.

29.1.2 General Anisotropic Case

The proof for general anisotropic media is more complicated. For the lossless anisotropic
media, we see that (29.1.12) is purely imaginary. However, when the medium is lossy, this
same equation will have a real part. Hence, we need to find the real part of (29.1.12) for the
general lossy case.

About taking the Real and Imaginary Parts of a Complex Expression

To this end, we digress on taking the real and imaginary parts of a complex expression. Here,
we need to find the complex conjugate5 of (29.1.12), which is scalar, and add it to itself to
get its real part. The complex conjugate of the scalar

c = δH∗ · µ · δH

is6

c∗ = δH · µ∗ · δH∗ = δH∗ · µ† · δH
5Also called hermitian conjugate.
6To arrive at these expressions, one makes use of the matrix algebra rule that if D = A · B · C, then

D
t

= C
t ·Bt ·At

. This is true even for non-square matrices. But for our case here, A is a 1× 3 row vector,
and C is a 3×1 column vector, and B is a 3×3 matrix. In vector algebra, the transpose of a vector is implied.
Also, in our case here, D is a scalar, and hence, its transpose is itself.
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Similarly, the complex conjugate of the scalar

d = δE · ε∗ · δE∗ = δE∗ · ε† · δE

is
d∗ = δE∗ · ε† · δE

Therefore,

=m (δH∗ · µ · δH) =
1

2j
δH∗ · (µ− µ†) · δH

=m (δE · ε · δE∗) =
1

2j
δE∗ · (ε− ε†) · δE

and similarly for the real part.
Finally, after taking the complex conjugate of the scalar quantity (29.1.12) and adding it

to itself, we have
�

V

[−jωδH∗ · (µ− µ†) · δH− jωδE∗ · (ε− ε†) · δE]dV = 0 (29.1.17)

For lossy media, −j(µ − µ†) and −j(ε − ε†) are hermitian negative matrices. Hence the
integrand is always negative definite, and the above equation cannot be satisfied unless δH =
δE = 0 everywhere in V . Thus, uniqueness is guaranteed in a lossy anisotropic medium.

Similar statement can be made as the isotropic case if the medium is active. Then the
integrand is positive definite, and the above equation cannot be satisfied unless δH = δE = 0
everywhere in V and hence, uniqueness is satisfied.

29.1.3 Hind Sight

The proof of uniqueness for Maxwell’s equations is very similar to the proof of uniqueness for
a matrix equation [69]

A · x = b (29.1.18)

If a solution to a matrix equation exists without excitation, namely, when b = 0, then the
solution is the null space solution [69], namely, x = xN . In other words,

A · xN = 0 (29.1.19)

These null space solutions exist without a “driving term” b on the right-hand side. For
Maxwell’s Equations, b corresponds to the source terms. They are like the homogeneous
solution of an ordinary differential equation or a partial differential equation [81]. In an
enclosed region of volume V bounded by a surface S, homogeneous solutions are the resonant
solutions of this Maxwellian system. When these solutions exist, they give rise to non-
uniqueness.

Also, notice that (29.1.7) and (29.1.8) are Maxwell’s equations without the source terms.
In a closed region V bounded by a surface S, only resonance solutions for δE and δH with
the relevant boundary conditions can exist when there are no source terms.
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As previoulsy mentioned, one way to ensure that these resonant solutions are eliminated
is to put in loss or gain. When loss or gain is present, then the resonant solutions are decaying
sinusoids or growing sinusoids. Since we are looking for solutions in the frequency domain,
or time harmonic solutions, we are only looking for the solution on the real ω axis on the
complex ω plane. These non-sinusoidal solutions are outside the solution space: They are
not part of the time-harmonic solutions we are looking for. Therefore, there are no resonant
null-space solutions.

29.1.4 Connection to Poles of a Linear System

The output to input of a linear system can be represented by a transfer function H(ω) [45,153].
If H(ω) has poles, and if the system is lossless, the poles are on the real axis. Therefore, when
ω = ωpole, the function H(ω) becomes undefined. This also gives rise to non-uniqueness of the
output with respect to the input. Poles usually correspond to resonant solutions, and hence,
the non-uniqueness of the solution is intimately related to the non-uniqueness of Maxwell’s
equations at the resonant frequencies of a structure. This is illustrated in the upper part of
Figure 29.2.

Figure 29.2: The non-uniqueness problem is intimately related to the locations of the poles
of a transfer function being on the real axis.
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If the input function is f(t), with Fourier transform F (ω), then the output y(t) is given
by the following Fourier integral, viz.,

y(t) =
1

2π

� ∞
−∞

dωejωtH(ω)F (ω) (29.1.20)

where the Fourier inversion integral path is on the real axis on the complex ω plane. The
Fourier inversion integral is undefined or non-unique.

However, if loss is introduced, these poles will move away from the real axis as shown
in the lower part of Figure 29.2. Then the transfer function is uniquely determined for all
frequencies on the real axis. In this way, the Fourier inversion integral in (29.1.20) is well
defined, and uniqueness of the solution is guaranteed.

29.1.5 Radiation from Antenna Sources

The above uniqueness theorem guarantees that if we have some antennas with prescribed
current sources on them, the radiated field from these antennas are unique. To see how this
can come about, we first study the radiation of sources into a region V bounded by a large
surface Sinf as shown in Figure 29.3 [34].

Even when n̂×E or n̂×H are specified on the surface at Sinf, the solution is nonunique
because the volume V bounded by Sinf, can have many resonant solutions. In fact, the
region will be replete with resonant solutions as one makes Sinf become very large. The way
to remove these resonant solutions is to introduce an infinitesimal amount of loss in region
V . Then these resonant solutions will disappear. Now we can take Sinf to infinity, and the
solution will always be unique.

Notice that if Sinf → ∞, the waves that leave the sources will never be reflected back
because of the small amount of loss. The radiated field will just disappear into infinity. This
is just what radiation loss is: power that propagate to infinity, but never to return. In fact,
one way of guaranteeing the uniqueness of the solution in region V when Sinf is infinitely large,
or that V is infinitely large is to impose the radiation condition: the waves that radiate to
infinity are outgoing waves only, and never do they return. This is also called the Sommerfeld
radiation condition [154]. Uniqueness of the field outside the sources is always guaranteed if
we assume that the field radiates to infinity and never to return. This is equivalent to solving
the cavity solutions with an infinitesimal loss, and then letting the size of the cavity become
infinitely large.
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Figure 29.3: The solution for antenna radiation is unique because we impose the Sommerfeld
radiation condition when seeking the solution. This is equivalent to assuming an infinitesimal
loss when seeking the solution in V .
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ces phénomènes. Bachelier, 1823.
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